\(\int \frac {\log (c (d+e x)) (a+b \log (c (d+e x)))}{(d+e x)^2} \, dx\) [402]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 28, antiderivative size = 92 \[ \int \frac {\log (c (d+e x)) (a+b \log (c (d+e x)))}{(d+e x)^2} \, dx=-\frac {b}{e (d+e x)}-\frac {b \log (c (d+e x))}{e (d+e x)}-\frac {\log (c (d+e x)) (a+b \log (c (d+e x)))}{e (d+e x)}-\frac {a+b+b \log (c (d+e x))}{e (d+e x)} \]

[Out]

-b/e/(e*x+d)-b*ln(c*(e*x+d))/e/(e*x+d)-ln(c*(e*x+d))*(a+b*ln(c*(e*x+d)))/e/(e*x+d)+(-a-b-b*ln(c*(e*x+d)))/e/(e
*x+d)

Rubi [A] (verified)

Time = 0.07 (sec) , antiderivative size = 92, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {2416, 12, 2341, 2413} \[ \int \frac {\log (c (d+e x)) (a+b \log (c (d+e x)))}{(d+e x)^2} \, dx=-\frac {\log (c (d+e x)) (a+b \log (c (d+e x)))}{e (d+e x)}-\frac {a+b \log (c (d+e x))+b}{e (d+e x)}-\frac {b \log (c (d+e x))}{e (d+e x)}-\frac {b}{e (d+e x)} \]

[In]

Int[(Log[c*(d + e*x)]*(a + b*Log[c*(d + e*x)]))/(d + e*x)^2,x]

[Out]

-(b/(e*(d + e*x))) - (b*Log[c*(d + e*x)])/(e*(d + e*x)) - (Log[c*(d + e*x)]*(a + b*Log[c*(d + e*x)]))/(e*(d +
e*x)) - (a + b + b*Log[c*(d + e*x)])/(e*(d + e*x))

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 2341

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*Log[c*x^
n])/(d*(m + 1))), x] - Simp[b*n*((d*x)^(m + 1)/(d*(m + 1)^2)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]

Rule 2413

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.) + Log[(f_.)*(x_)^(r_.)]*(e_.))*((g_.)*(x_))^(m_.), x_Sy
mbol] :> With[{u = IntHide[(g*x)^m*(a + b*Log[c*x^n])^p, x]}, Dist[d + e*Log[f*x^r], u, x] - Dist[e*r, Int[Sim
plifyIntegrand[u/x, x], x], x]] /; FreeQ[{a, b, c, d, e, f, g, m, n, p, r}, x] &&  !(EqQ[p, 1] && EqQ[a, 0] &&
 NeQ[d, 0])

Rule 2416

Int[((a_.) + Log[v_]*(b_.))^(p_.)*((c_.) + Log[v_]*(d_.))^(q_.)*(u_)^(m_.), x_Symbol] :> With[{e = Coeff[u, x,
 0], f = Coeff[u, x, 1], g = Coeff[v, x, 0], h = Coeff[v, x, 1]}, Dist[1/h, Subst[Int[(f*(x/h))^m*(a + b*Log[x
])^p*(c + d*Log[x])^q, x], x, v], x] /; EqQ[f*g - e*h, 0] && NeQ[g, 0]] /; FreeQ[{a, b, c, d, m, p, q}, x] &&
LinearQ[{u, v}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {c^2 \log (x) (a+b \log (x))}{x^2} \, dx,x,c (d+e x)\right )}{c e} \\ & = \frac {c \text {Subst}\left (\int \frac {\log (x) (a+b \log (x))}{x^2} \, dx,x,c (d+e x)\right )}{e} \\ & = -\frac {b \log (c (d+e x))}{e (d+e x)}-\frac {\log (c (d+e x)) (a+b \log (c (d+e x)))}{e (d+e x)}-\frac {c \text {Subst}\left (\int \frac {-a \left (1+\frac {b}{a}\right )-b \log (x)}{x^2} \, dx,x,c (d+e x)\right )}{e} \\ & = -\frac {b}{e (d+e x)}-\frac {b \log (c (d+e x))}{e (d+e x)}-\frac {\log (c (d+e x)) (a+b \log (c (d+e x)))}{e (d+e x)}-\frac {a+b+b \log (c (d+e x))}{e (d+e x)} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 43, normalized size of antiderivative = 0.47 \[ \int \frac {\log (c (d+e x)) (a+b \log (c (d+e x)))}{(d+e x)^2} \, dx=-\frac {a+2 b+(a+2 b) \log (c (d+e x))+b \log ^2(c (d+e x))}{e (d+e x)} \]

[In]

Integrate[(Log[c*(d + e*x)]*(a + b*Log[c*(d + e*x)]))/(d + e*x)^2,x]

[Out]

-((a + 2*b + (a + 2*b)*Log[c*(d + e*x)] + b*Log[c*(d + e*x)]^2)/(e*(d + e*x)))

Maple [A] (verified)

Time = 0.58 (sec) , antiderivative size = 54, normalized size of antiderivative = 0.59

method result size
norman \(\frac {-\frac {a +2 b}{e}-\frac {b \ln \left (c \left (e x +d \right )\right )^{2}}{e}-\frac {\left (a +2 b \right ) \ln \left (c \left (e x +d \right )\right )}{e}}{e x +d}\) \(54\)
parallelrisch \(\frac {-\ln \left (c \left (e x +d \right )\right )^{2} b \,e^{2}-\ln \left (c \left (e x +d \right )\right ) a \,e^{2}-2 \ln \left (c \left (e x +d \right )\right ) b \,e^{2}-a \,e^{2}-2 e^{2} b}{\left (e x +d \right ) e^{3}}\) \(69\)
risch \(-\frac {b \ln \left (c \left (e x +d \right )\right )^{2}}{e \left (e x +d \right )}-\frac {\left (a +2 b \right ) \ln \left (c \left (e x +d \right )\right )}{e \left (e x +d \right )}-\frac {a}{e \left (e x +d \right )}-\frac {2 b}{e \left (e x +d \right )}\) \(76\)
parts \(\frac {a c \left (-\frac {\ln \left (c e x +c d \right )}{c e x +c d}-\frac {1}{c e x +c d}\right )}{e}+\frac {b c \left (-\frac {\ln \left (c e x +c d \right )^{2}}{c e x +c d}-\frac {2 \ln \left (c e x +c d \right )}{c e x +c d}-\frac {2}{c e x +c d}\right )}{e}\) \(105\)
derivativedivides \(\frac {c^{2} a \left (-\frac {\ln \left (c e x +c d \right )}{c e x +c d}-\frac {1}{c e x +c d}\right )+c^{2} b \left (-\frac {\ln \left (c e x +c d \right )^{2}}{c e x +c d}-\frac {2 \ln \left (c e x +c d \right )}{c e x +c d}-\frac {2}{c e x +c d}\right )}{c e}\) \(110\)
default \(\frac {c^{2} a \left (-\frac {\ln \left (c e x +c d \right )}{c e x +c d}-\frac {1}{c e x +c d}\right )+c^{2} b \left (-\frac {\ln \left (c e x +c d \right )^{2}}{c e x +c d}-\frac {2 \ln \left (c e x +c d \right )}{c e x +c d}-\frac {2}{c e x +c d}\right )}{c e}\) \(110\)

[In]

int(ln(c*(e*x+d))*(a+b*ln(c*(e*x+d)))/(e*x+d)^2,x,method=_RETURNVERBOSE)

[Out]

(-(a+2*b)/e-b/e*ln(c*(e*x+d))^2-(a+2*b)/e*ln(c*(e*x+d)))/(e*x+d)

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 46, normalized size of antiderivative = 0.50 \[ \int \frac {\log (c (d+e x)) (a+b \log (c (d+e x)))}{(d+e x)^2} \, dx=-\frac {b \log \left (c e x + c d\right )^{2} + {\left (a + 2 \, b\right )} \log \left (c e x + c d\right ) + a + 2 \, b}{e^{2} x + d e} \]

[In]

integrate(log(c*(e*x+d))*(a+b*log(c*(e*x+d)))/(e*x+d)^2,x, algorithm="fricas")

[Out]

-(b*log(c*e*x + c*d)^2 + (a + 2*b)*log(c*e*x + c*d) + a + 2*b)/(e^2*x + d*e)

Sympy [A] (verification not implemented)

Time = 0.14 (sec) , antiderivative size = 56, normalized size of antiderivative = 0.61 \[ \int \frac {\log (c (d+e x)) (a+b \log (c (d+e x)))}{(d+e x)^2} \, dx=- \frac {b \log {\left (c \left (d + e x\right ) \right )}^{2}}{d e + e^{2} x} + \frac {\left (- a - 2 b\right ) \log {\left (c \left (d + e x\right ) \right )}}{d e + e^{2} x} - \frac {a + 2 b}{d e + e^{2} x} \]

[In]

integrate(ln(c*(e*x+d))*(a+b*ln(c*(e*x+d)))/(e*x+d)**2,x)

[Out]

-b*log(c*(d + e*x))**2/(d*e + e**2*x) + (-a - 2*b)*log(c*(d + e*x))/(d*e + e**2*x) - (a + 2*b)/(d*e + e**2*x)

Maxima [A] (verification not implemented)

none

Time = 0.20 (sec) , antiderivative size = 99, normalized size of antiderivative = 1.08 \[ \int \frac {\log (c (d+e x)) (a+b \log (c (d+e x)))}{(d+e x)^2} \, dx=-{\left (b {\left (\frac {c e}{c e^{3} x + c d e^{2}} + \frac {\log \left (c e x + c d\right )}{e^{2} x + d e}\right )} + \frac {a}{e^{2} x + d e}\right )} \log \left ({\left (e x + d\right )} c\right ) - \frac {{\left (b {\left (\log \left (c\right ) + 2\right )} + b \log \left (e x + d\right ) + a\right )} e}{e^{3} x + d e^{2}} \]

[In]

integrate(log(c*(e*x+d))*(a+b*log(c*(e*x+d)))/(e*x+d)^2,x, algorithm="maxima")

[Out]

-(b*(c*e/(c*e^3*x + c*d*e^2) + log(c*e*x + c*d)/(e^2*x + d*e)) + a/(e^2*x + d*e))*log((e*x + d)*c) - (b*(log(c
) + 2) + b*log(e*x + d) + a)*e/(e^3*x + d*e^2)

Giac [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 90, normalized size of antiderivative = 0.98 \[ \int \frac {\log (c (d+e x)) (a+b \log (c (d+e x)))}{(d+e x)^2} \, dx=-\frac {e {\left (\frac {b c \log \left ({\left (e x + d\right )} c\right )^{2}}{{\left (e x + d\right )} e^{2}} + \frac {{\left (a c^{2} + 2 \, b c^{2}\right )} \log \left ({\left (e x + d\right )} c\right )}{{\left (e x + d\right )} c e^{2}} + \frac {a c^{2} + 2 \, b c^{2}}{{\left (e x + d\right )} c e^{2}}\right )}}{c} \]

[In]

integrate(log(c*(e*x+d))*(a+b*log(c*(e*x+d)))/(e*x+d)^2,x, algorithm="giac")

[Out]

-e*(b*c*log((e*x + d)*c)^2/((e*x + d)*e^2) + (a*c^2 + 2*b*c^2)*log((e*x + d)*c)/((e*x + d)*c*e^2) + (a*c^2 + 2
*b*c^2)/((e*x + d)*c*e^2))/c

Mupad [B] (verification not implemented)

Time = 1.58 (sec) , antiderivative size = 63, normalized size of antiderivative = 0.68 \[ \int \frac {\log (c (d+e x)) (a+b \log (c (d+e x)))}{(d+e x)^2} \, dx=-\frac {d\,\left (b\,{\ln \left (c\,\left (d+e\,x\right )\right )}^2+a\,\ln \left (c\,\left (d+e\,x\right )\right )+2\,b\,\ln \left (c\,\left (d+e\,x\right )\right )\right )-e\,\left (a\,x+2\,b\,x\right )}{d\,e\,\left (d+e\,x\right )} \]

[In]

int((log(c*(d + e*x))*(a + b*log(c*(d + e*x))))/(d + e*x)^2,x)

[Out]

-(d*(b*log(c*(d + e*x))^2 + a*log(c*(d + e*x)) + 2*b*log(c*(d + e*x))) - e*(a*x + 2*b*x))/(d*e*(d + e*x))